Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4612590 | Journal of Differential Equations | 2010 | 25 Pages |
Abstract
The semilinear reaction–diffusion equation −ε2Δu+b(x,u)=0 with Dirichlet boundary conditions is considered in a convex polygonal domain. The singular perturbation parameter ε is arbitrarily small, and the “reduced equation” b(x,u0(x))=0 may have multiple solutions. An asymptotic expansion for u is constructed that involves boundary and corner layer functions. By perturbing this asymptotic expansion, we obtain certain sub- and super-solutions and thus show the existence of a solution u that is close to the constructed asymptotic expansion. The polygonal boundary forces the study of the nonlinear autonomous elliptic equation −Δz+f(z)=0 posed in an infinite sector, and then well-posedness of the corresponding linearized problem.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis