Article ID Journal Published Year Pages File Type
4612600 Journal of Differential Equations 2010 18 Pages PDF
Abstract

In this paper we are concerned with the following Neumann problem{ε2Δu−u+f(u)=0,u>0in Ω,∂u∂ν=0on ∂Ω, where ε is a small positive parameter, f is a superlinear and subcritical nonlinearity, Ω   is a smooth and bounded domain in RNRN. Solutions with multiple boundary peaks have been established for this problem. It has also been proved that for any integer k there exists an interior k  -peak solution which concentrates, as ε→0+ε→0+, at k sphere packing points in Ω.In this paper we prove the existence of a second interior k-peak solution provided that k is large enough, and we conjecture that its peaks are located along a straight line. Moreover, when Ω is a two-dimensional strictly convex domain, we also construct a third interior k-peak solution provided that k is large enough, whose peaks are aligned on a closed curve near ∂Ω.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,