Article ID Journal Published Year Pages File Type
4612609 Journal of Differential Equations 2009 35 Pages PDF
Abstract

In this paper, we study a free boundary value problem for two-phase liquid–gas model with mass-dependent viscosity coefficient when both the initial liquid and gas masses connect to vacuum with a discontinuity. This is an extension of the paper [S. Evje, K.H. Karlsen, Global weak solutions for a viscous liquid–gas model with singular pressure law, http://www.irisresearch.no/docsent/emp.nsf/wvAnsatte/SEV]. Just as in [S. Evje, K.H. Karlsen, Global weak solutions for a viscous liquid–gas model with singular pressure law, http://www.irisresearch.no/docsent/emp.nsf/wvAnsatte/SEV], the gas is assumed to be polytropic whereas the liquid is treated as an incompressible fluid. We give the proof of the global existence and uniqueness of weak solutions when β∈(0,1], which have improved the previous result of Evje and Karlsen, and get the asymptotic behavior result, also we obtain the regularity of the solutions by energy method.

Related Topics
Physical Sciences and Engineering Mathematics Analysis