Article ID Journal Published Year Pages File Type
4612611 Journal of Differential Equations 2009 21 Pages PDF
Abstract

We obtain results on the convergence of Galerkin solutions and continuous dependence on data for the spectrally-hyperviscous Navier–Stokes equations. Let uN denote the Galerkin approximates to the solution u, and let wN=u−uN. Then our main result uses the decomposition wN=PnwN+QnwN where (for fixed n) Pn is the projection onto the first n eigenspaces of A=−Δ and Qn=I−Pn. For assumptions on n that compare well with those in related previous results, the convergence of ‖QnwN(t)‖Hβ as N→∞ depends linearly on key parameters (and on negative powers of λn), thus reflective of Kolmogorov-theory predictions that in high wavenumber modes viscous (i.e. linear) effects dominate. Meanwhile ‖PnwN(t)‖Hβ satisfies a more standard exponential estimate, with positive, but fractional, dependence on λn. Modifications of these estimates demonstrate continuous dependence on data.

Related Topics
Physical Sciences and Engineering Mathematics Analysis