Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4612614 | Journal of Differential Equations | 2009 | 26 Pages |
Abstract
The aim of this paper is twofold: First, we characterize an essentially optimal class of boundary operators Θ which give rise to self-adjoint Laplacians −ΔΘ,Ω in L2(Ω;dnx) with (nonlocal and local) Robin-type boundary conditions on bounded Lipschitz domains Ω⊂Rn, n∈N, n⩾2. Second, we extend Friedlander's inequalities between Neumann and Dirichlet Laplacian eigenvalues to those between nonlocal Robin and Dirichlet Laplacian eigenvalues associated with bounded Lipschitz domains Ω, following an approach introduced by Filonov for this type of problems.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis