Article ID Journal Published Year Pages File Type
4612614 Journal of Differential Equations 2009 26 Pages PDF
Abstract

The aim of this paper is twofold: First, we characterize an essentially optimal class of boundary operators Θ which give rise to self-adjoint Laplacians −ΔΘ,Ω in L2(Ω;dnx) with (nonlocal and local) Robin-type boundary conditions on bounded Lipschitz domains Ω⊂Rn, n∈N, n⩾2. Second, we extend Friedlander's inequalities between Neumann and Dirichlet Laplacian eigenvalues to those between nonlocal Robin and Dirichlet Laplacian eigenvalues associated with bounded Lipschitz domains Ω, following an approach introduced by Filonov for this type of problems.

Related Topics
Physical Sciences and Engineering Mathematics Analysis