Article ID Journal Published Year Pages File Type
4612644 Journal of Differential Equations 2006 14 Pages PDF
Abstract

In this paper four-parameter unfoldings Xλ of symmetric elliptic Hamiltonians of degree four are studied. We prove that in a compact region of the period annulus of X0 the displacement function of Xλ is sign equivalent to its principal part, which is given by a family induced by a Chebychev system; and we describe the bifurcation diagram of Xλ in a full neighborhood of the origin in the parameter space, where at most two limit cycles can exist for the corresponding systems.

Related Topics
Physical Sciences and Engineering Mathematics Analysis