Article ID Journal Published Year Pages File Type
4612664 Journal of Differential Equations 2009 42 Pages PDF
Abstract

Recently, there has been some interest on the stability of waves where the functions involved grow or decay at an algebraic rate m|x|. In this paper we define the so-called algebraic dichotomy that may aid in treating such problems. We discuss the basic properties of the algebraic dichotomy, methods of detecting it, and calculating the power of the weight function.We present several examples: (1) The Bessel equation. (2) The n-degree Fisher type equation. (3) Hyperbolic conservation laws in similarity coordinates. (4) A system of conservation laws with a Dafermos type viscous regularization. We show that the linearized system generates an analytic semigroup in the space of algebraic decay functions. This example motivates our work on algebraic dichotomies.

Related Topics
Physical Sciences and Engineering Mathematics Analysis