Article ID Journal Published Year Pages File Type
4612671 Journal of Differential Equations 2009 19 Pages PDF
Abstract

The existence of global-in-time weak solutions to the one-dimensional viscous quantum hydrodynamic equations is proved. The model consists of the conservation laws for the particle density and particle current density, including quantum corrections from the Bohm potential and viscous stabilizations arising from quantum Fokker–Planck interaction terms in the Wigner equation. The model equations are coupled self-consistently to the Poisson equation for the electric potential and are supplemented with periodic boundary and initial conditions. When a diffusion term linearly proportional to the velocity is introduced in the momentum equation, the positivity of the particle density is proved. This term, which introduces a strong regularizing effect, may be viewed as a classical conservative friction term due to particle interactions with the background temperature. Without this regularizing viscous term, only the nonnegativity of the density can be shown. The existence proof relies on the Faedo–Galerkin method together with a priori estimates from the energy functional.

Related Topics
Physical Sciences and Engineering Mathematics Analysis