Article ID Journal Published Year Pages File Type
4612699 Journal of Differential Equations 2006 23 Pages PDF
Abstract

The lack of a general maximum principle for biharmonic equations suggests to study under which boundary conditions the positivity preserving property holds. We show that this property holds in general domains for suitable linear combinations of Dirichlet and Navier boundary conditions. The spectrum of this operator exhibits some unexpected features: radial data may generate nonradial solutions. These boundary conditions are also of some interest in semilinear equations, since they enable us to give explicit radial singular solutions to fourth order Gelfand-type problems.

Related Topics
Physical Sciences and Engineering Mathematics Analysis