Article ID Journal Published Year Pages File Type
4612734 Journal of Differential Equations 2009 26 Pages PDF
Abstract

We consider a parabolic equation ut−Δu+u=0 with nonlinear boundary conditions , where as |s|→∞. In [J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal, Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity, Proc. Roy. Soc. Edinburgh Sect. A 137 (2) (2007) 225–252] the authors proved the existence of unbounded branches of equilibria for λ close to a Steklov eigenvalue of odd multiplicity. In this work, we characterize the stability of such equilibria and analyze several features of the bifurcating branches. We also investigate several question related to the global dynamical properties of the system for different values of the parameter, including the behavior of the attractor of the system when the parameter crosses the first Steklov eigenvalue and the existence of extremal equilibria. We include Appendix A where we prove a uniform antimaximum principle and several results related to the spectral behavior when the potential at the boundary is perturbed.

Related Topics
Physical Sciences and Engineering Mathematics Analysis