Article ID Journal Published Year Pages File Type
4612850 Journal of Differential Equations 2009 20 Pages PDF
Abstract

A variational inequality theory for demicontinuous S-contractive maps in Hilbert spaces is established by employing the ideas of Granas' topological transversality. Such a variational inequality theory has many properties similar to those of fixed point theory for demicontinuous weakly inward S-contractive maps and to those of fixed point index for condensing maps. The variational inequality theory will be applied to study the existence of positive weak solutions and eigenvalue problems for semilinear second-order elliptic inequalities with nonlinearities which satisfy suitable lower bound conditions involving the critical Sobolev exponent. There has been little discussion for such elliptic inequalities involving the critical Sobolev exponent in the literature.

Related Topics
Physical Sciences and Engineering Mathematics Analysis