Article ID Journal Published Year Pages File Type
4612858 Journal of Differential Equations 2009 20 Pages PDF
Abstract

This paper deals with the boundary feedback stabilization problem of a wide class of linear first order hyperbolic systems with non-smooth coefficients. We propose static boundary inputs (actuators) which lead us to a closed loop system with non-smooth coefficients and non-homogeneous boundary conditions. Then, we prove the exponential stability of the closed loop system under suitable conditions on the coefficients and the feedback gains. The key idea of the proof is to combine the regularization techniques with the characteristics method. Furthermore, by the spectral analysis method, it is also shown that the closed loop system has a sequence of generalized eigenfunctions, which form a Riesz basis for the state space, and hence the spectrum-determined growth condition is deduced.

Related Topics
Physical Sciences and Engineering Mathematics Analysis