Article ID Journal Published Year Pages File Type
4612863 Journal of Differential Equations 2009 29 Pages PDF
Abstract

For nonautonomous linear equations x′=A(t)x, we show how to characterize completely nonuniform exponential dichotomies using quadratic Lyapunov functions. The characterization can be expressed in terms of inequalities between matrices. In particular, we obtain converse theorems, by constructing explicitly quadratic Lyapunov functions for each nonuniform exponential dichotomy. We note that the nonuniform exponential dichotomies include as a very special case (uniform) exponential dichotomies. In particular, we recover in a very simple manner a complete characterization of uniform exponential dichotomies in terms of quadratic Lyapunov functions. We emphasize that our approach is new even in the uniform case.Furthermore, we show that the instability of a nonuniform exponential dichotomy persists under sufficiently small perturbations. The proof uses quadratic Lyapunov functions, and in particular avoids the use of invariant unstable manifolds which, to the best of our knowledge, are not known to exist in this general setting.

Related Topics
Physical Sciences and Engineering Mathematics Analysis