Article ID Journal Published Year Pages File Type
4612931 Journal of Differential Equations 2009 43 Pages PDF
Abstract

We discuss gain of analyticity phenomenon of solutions to the initial value problem for semilinear Schrödinger equations with gauge invariant nonlinearity. We prove that if the initial data decays exponentially, then the solution becomes real-analytic in the space variable and a Gevrey function of order 2 in the time variable except in the initial plane. Our proof is based on the energy estimates developed in our previous work and on fine summation formulae concerned with a matrix norm.

Related Topics
Physical Sciences and Engineering Mathematics Analysis