Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4612935 | Journal of Differential Equations | 2009 | 26 Pages |
Abstract
We present a systematic study of local solutions of the ODE of the form near t=0. Such ODEs occur in the study of self-similar radial solutions of some second order PDEs. A general theorem of existence and uniqueness is established. It is shown that there is a dichotomy between the cases γ>0 and γ<0, where γ=∂f/∂x′ at t=0. As an application, we study the singular behavior of self-similar radial solutions of a nonlinear wave equation with superlinear damping near an incoming light cone. A smoothing effect is observed as the incoming waves are focused at the tip of the cone.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis