Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4612958 | Journal of Differential Equations | 2008 | 17 Pages |
Abstract
This paper deals with the behavior of two-dimensional linear elliptic equations with unbounded (and possibly infinite) coefficients. We prove the uniform convergence of the solutions by truncating the coefficients and using a pointwise estimate of the solutions combined with a two-dimensional capacitary estimate. We give two applications of this result: the continuity of the solutions of two-dimensional linear elliptic equations by a constructive approach, and the density of the continuous functions in the domain of the Γ-limit of equicoercive diffusion energies in dimension two. We also build two counter-examples which show that the previous results cannot be extended to dimension three.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis