Article ID Journal Published Year Pages File Type
4612960 Journal of Differential Equations 2008 25 Pages PDF
Abstract

This paper is addressed to some questions concerning the exponential stability and its robustness measure for linear time-varying differential-algebraic systems of index 1. First, the Bohl exponent theory that is well known for ordinary differential equations is extended to differential-algebraic equations. Then, it is investigated that how the Bohl exponent and the stability radii with respect to dynamic perturbations for a differential-algebraic system depend on the system data. The paper can be considered as a continued and complementary part to a recent paper on stability radii for time-varying differential-algebraic equations [N.H. Du, V.H. Linh, Stability radii for linear time-varying differential-algebraic equations with respect to dynamic perturbations, J. Differential Equations 230 (2006) 579–599].

Related Topics
Physical Sciences and Engineering Mathematics Analysis