Article ID Journal Published Year Pages File Type
4612963 Journal of Differential Equations 2008 23 Pages PDF
Abstract

The compactness of weak solutions to the magnetohydrodynamic equations for the viscous, compressible, heat conducting fluids is considered in both the three-dimensional space R3 and the three-dimensional periodic domains. The viscosities, the heat conductivity as well as the magnetic coefficient are allowed to depend on the density, and may vanish on the vacuum. This paper provides a different idea from [X. Hu, D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys. (2008), in press] to show the compactness of solutions of viscous, compressible, heat conducting magnetohydrodynamic flows, derives a new entropy identity, and shows that the limit of a sequence of weak solutions is still a weak solution to the compressible magnetohydrodynamic equations.

Related Topics
Physical Sciences and Engineering Mathematics Analysis