Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4612980 | Journal of Differential Equations | 2009 | 38 Pages |
Let be a family of elliptic differential operators with unbounded coefficients defined in RN+1. In [M. Kunze, L. Lorenzi, A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc., in press], under suitable assumptions, it has been proved that the operator G:=A−Ds generates a semigroup of positive contractions (Tp(t)) in Lp(RN+1,ν) for every 1⩽p<+∞, where ν is an infinitesimally invariant measure of (Tp(t)). Here, under some additional conditions on the growth of the coefficients of A, which cover also some growths with an exponential rate at ∞, we provide two different cores for the infinitesimal generator Gp of (Tp(t)) in Lp(RN+1,ν) for p∈[1,+∞), and we also give a partial characterization of D(Gp). Finally, we extend the results so far obtained to the case when the coefficients of the operator A are T-periodic with respect to the variable s for some T>0.