Article ID Journal Published Year Pages File Type
4612990 Journal of Differential Equations 2009 20 Pages PDF
Abstract

We consider the stability problem for shock layers in Slemrod's model of an isentropic gas with capillarity. We show that these traveling waves are monotone in the weak capillarity case, and become highly oscillatory as the capillarity strength increases. Using a spectral energy estimate we prove that small-amplitude monotone shocks are spectrally stable. We also show that monotone shocks have no unstable real spectrum regardless of amplitude; this implies that any instabilities of these monotone traveling waves, if they exist, must occur through a Hopf-like bifurcation, where one or more conjugate pairs of eigenvalues cross the imaginary axis. We then conduct a systematic numerical Evans function study, which shows that monotone and mildly oscillatory profiles in an adiabatic gas are spectrally stable for moderate values of shock and capillarity strengths. In particular, we show that the transition from monotone to nonmonotone profiles does not appear to trigger any instabilities.

Related Topics
Physical Sciences and Engineering Mathematics Analysis