Article ID Journal Published Year Pages File Type
4613108 Journal of Differential Equations 2009 35 Pages PDF
Abstract

In this paper, we first study the analytical property of the first Melnikov function for general Hamiltonian systems exhibiting a cuspidal loop and obtain its expansion at the Hamiltonian value corresponding to the loop. Then by using the first coefficients of the expansion we give some conditions for the perturbed system to have 4, 5 or 6 limit cycles in a neighborhood of loop. As an application of our main results, we consider some polynomial Lienard systems and find 4, 5 or 6 limit cycles.

Related Topics
Physical Sciences and Engineering Mathematics Analysis