Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4613161 | Journal of Differential Equations | 2008 | 17 Pages |
We consider reaction–diffusion–advection models for spatially distributed populations that have a tendency to disperse up the gradient of fitness, where fitness is defined as a logistic local population growth rate. We show that in temporally constant but spatially varying environments such populations have equilibrium distributions that can approximate those that would be predicted by a version of the ideal free distribution incorporating population dynamics. The modeling approach shows that a dispersal mechanism based on local information about the environment and population density can approximate the ideal free distribution. The analysis suggests that such a dispersal mechanism may sometimes be advantageous because it allows populations to approximately track resource availability. The models are quasilinear parabolic equations with nonlinear boundary conditions.