Article ID Journal Published Year Pages File Type
4613164 Journal of Differential Equations 2008 11 Pages PDF
Abstract

We consider the Tikhonov-like dynamics where A is a maximal monotone operator on a Hilbert space and the parameter function ε(t) tends to 0 as t→∞ with . When A is the subdifferential of a closed proper convex function f, we establish strong convergence of u(t) towards the least-norm minimizer of f. In the general case we prove strong convergence towards the least-norm point in A−1(0) provided that the function ε(t) has bounded variation, and provide a counterexample when this property fails.

Related Topics
Physical Sciences and Engineering Mathematics Analysis