Article ID Journal Published Year Pages File Type
4613169 Journal of Differential Equations 2008 29 Pages PDF
Abstract

Under some nondegeneracy conditions we give asymptotic formulae for the stability parameter of a family of singular-limit Hill's equation which depends on three parameters. We use the blow-up techniques introduced in [R. Martínez, A. Samà, C. Simó, Analysis of the stability of a family of singular-limit linear periodic systems in R4. Applications, J. Differential Equations 226 (2006) 652–686]. The main contribution of this paper concerns the study of the nondegeneracy conditions. We give a geometrical interpretation of them, in terms of heteroclinic orbits for some related systems. In this way one can determine values of the parameters such that the nondegeneracy conditions are satisfied. As a motivation and application we consider the vertical stability of homographic solutions in the three-body problem.

Related Topics
Physical Sciences and Engineering Mathematics Analysis