Article ID Journal Published Year Pages File Type
4613199 Journal of Differential Equations 2008 29 Pages PDF
Abstract

In this paper we show the existence and bifurcation of T-periodic solutions of a special form for an autonomous Newtonian system with symmetry. If the phase-space R2n is equipped with the structure of an orthogonal representation (W,ρW) and the potential is invariant, then for every such a solution the set of indices of nonvanishing Fourier coefficients is finite and depends on W only. If the potential V depends on the squares of complex coordinates, then for every such a solution T is the minimal period.

Related Topics
Physical Sciences and Engineering Mathematics Analysis