Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4613236 | Journal of Differential Equations | 2007 | 15 Pages |
Abstract
The main goal of this paper is to prove analytically the existence of strange attractors in a family of vector fields consisting of two Brusselators linearly coupled by diffusion. We will show that such a family contains a generic unfolding of a 4-dimensional nilpotent singularity of codimension 4. On the other hand, we will prove that in any generic unfolding Xμ of an n-dimensional nilpotent singularity of codimension n there are bifurcation curves of (n−1)-dimensional nilpotent singularities of codimension n−1 which are in turn generically unfolded by Xμ. Arguments conclude recalling that any generic unfolding of the 3-dimensional nilpotent singularity of codimension 3 exhibits strange attractors.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis