Article ID Journal Published Year Pages File Type
4613260 Journal of Differential Equations 2007 23 Pages PDF
Abstract

In this paper, we study a stationary and a nonstationary problem of the Ginzburg–Landau–Maxwell equations with Coulomb gauge in the Lp framework. First we prove a unique existence of stationary solution near the constant state with a small external magnetic field. Moreover, we prove a globally in time existence of solutions to the time dependent Ginzburg–Landau–Maxwell equations with small initial data and external magnetic field, and we show its convergence to the corresponding stationary solution when time tends to infinity. The key of our approach is to use various Lp–Lq estimates of the analytic semigroup generated by the linearized problem. Especially our initial data belong to L3 without any additional regularity.

Related Topics
Physical Sciences and Engineering Mathematics Analysis