Article ID Journal Published Year Pages File Type
4613385 Journal of Differential Equations 2006 19 Pages PDF
Abstract

In this article we study uniqueness of positive solutions for the nonlinear uniformly elliptic equation in RN, limr→∞u(r)=0, where denotes the Pucci's extremal operator with parameters 0<λ⩽Λ and p>1. It is known that all positive solutions of this equation are radially symmetric with respect to a point in RN, so the problem reduces to the study of a radial version of this equation. However, this is still a nontrivial question even in the case of the Laplacian (λ=Λ). The Pucci's operator is a prototype of a nonlinear operator in no-divergence form. This feature makes the uniqueness question specially challenging, since two standard tools like Pohozaev identity and global integration by parts are no longer available. The corresponding equation involving is also considered.

Related Topics
Physical Sciences and Engineering Mathematics Analysis