Article ID Journal Published Year Pages File Type
4613394 Journal of Differential Equations 2006 29 Pages PDF
Abstract

This article is devoted to answering several questions about the central configurations of the planar (3+1)-body problem. Firstly, we study bifurcations of central configurations, proving the uniqueness of convex central configurations up to symmetry. Secondly, we settle the finiteness problem in the case of two nonzero equal masses. Lastly, we provide all the possibilities for the number of symmetrical central configurations, and discuss their bifurcations and spectral stability. Our proofs are based on applications of rational parametrizations and computer algebra.

Related Topics
Physical Sciences and Engineering Mathematics Analysis