Article ID Journal Published Year Pages File Type
4613402 Journal of Differential Equations 2007 32 Pages PDF
Abstract

We consider the existence of global solutions of the quasilinear wave equation with a boundary dissipation structure of an input–output in high dimensions when initial data and boundary inputs are near a given equilibrium of the system. Our main tool is the geometrical analysis. The main interest is to study the effect of the boundary dissipation structure on solutions of the quasilinear system. We show that the existence of global solutions depends not only on this dissipation structure but also on a Riemannian metric, given by the coefficients and the equilibrium of the system. Some geometrical conditions on this Riemannian metric are presented to guarantee the existence of global solutions. In particular, we prove that the norm of the state of the system decays exponentially if the input stops after a finite time, which implies the exponential stabilization of the system by boundary feedback.

Related Topics
Physical Sciences and Engineering Mathematics Analysis