Article ID Journal Published Year Pages File Type
4613448 Journal of Differential Equations 2007 24 Pages PDF
Abstract

This work deals with limit cycles of real planar analytic vector fields. It is well known that given any limit cycle Γ of an analytic vector field it always exists a real analytic function f0(x,y), defined in a neighborhood of Γ, and such that Γ is contained in its zero level set. In this work we introduce the notion of f0(x,y) being an m-solution, which is a merely analytic concept. Our main result is that a limit cycle Γ is of multiplicity m if and only if f0(x,y) is an m-solution of the vector field. We apply it to study in some examples the stability and the bifurcation of periodic orbits from some non-hyperbolic limit cycles.

Related Topics
Physical Sciences and Engineering Mathematics Analysis