Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4613448 | Journal of Differential Equations | 2007 | 24 Pages |
Abstract
This work deals with limit cycles of real planar analytic vector fields. It is well known that given any limit cycle Γ of an analytic vector field it always exists a real analytic function f0(x,y), defined in a neighborhood of Γ, and such that Γ is contained in its zero level set. In this work we introduce the notion of f0(x,y) being an m-solution, which is a merely analytic concept. Our main result is that a limit cycle Γ is of multiplicity m if and only if f0(x,y) is an m-solution of the vector field. We apply it to study in some examples the stability and the bifurcation of periodic orbits from some non-hyperbolic limit cycles.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis