Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4613472 | Journal of Differential Equations | 2006 | 42 Pages |
A geometric setting for constrained exterior differential systems on fibered manifolds with n-dimensional bases is proposed. Constraints given as submanifolds of jet bundles (locally defined by systems of first-order partial differential equations) are shown to carry a natural geometric structure, called the canonical distribution. Systems of second-order partial differential equations subjected to differential constraints are modeled as exterior differential systems defined on constraint submanifolds. As an important particular case, Lagrangian systems subjected to first-order differential constraints are considered. Different kinds of constraints are introduced and investigated (Lagrangian constraints, constraints adapted to the fibered structure, constraints arising from a (co)distribution, semi-holonomic constraints, holonomic constraints).