Article ID Journal Published Year Pages File Type
4613489 Journal of Differential Equations 2007 30 Pages PDF
Abstract

We study the existence of traveling wave fronts for a reaction–diffusion equation with spatio-temporal delays and small parameters. The equation reduces to a generalized Fisher equation if small parameters are zero. We present two results. In the first one, we deal with the equation with very general kernels and show the persistence of Fisher wave fronts for all sufficiently small parameters. In the second one, we deal with some particular kernels, with which the nonlocal equation can be reduced to a system of singularly perturbed ODEs, and we are then able to apply the geometric singular perturbation theory and phase plane arguments to this system to show the existence of the minimal wave speed, the existence of a continuum of wave fronts, and the global uniqueness of the physical wave front with each wave speed.

Related Topics
Physical Sciences and Engineering Mathematics Analysis