Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4613559 | Journal of Differential Equations | 2006 | 16 Pages |
Abstract
We prove the asymptotic stability of nonplanar two-states Riemann solutions in BGK approximations of a class of multidimensional systems of conservation laws. The latter consists of systems whose flux-functions in different directions share a common complete system of Riemann invariants, the level surfaces of which are hyperplanes. The asymptotic stability to which the main result refers is in the sense of the convergence as t→∞ in of the space of directions ζ=x/t. That is, the solution z(t,x,ξ) of the perturbed Cauchy problem for the corresponding BGK system satisfies as t→∞, in , where R(ζ) is the self-similar entropy solution of the two-states nonplanar Riemann problem for the system of conservation laws.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis