Article ID Journal Published Year Pages File Type
4613572 Journal of Differential Equations 2006 28 Pages PDF
Abstract

We investigate entire radial solutions of the semilinear biharmonic equation Δ2u=λexp(u) in Rn, n⩾5, λ>0 being a parameter. We show that singular radial solutions of the corresponding Dirichlet problem in the unit ball cannot be extended as solutions of the equation to the whole of Rn. In particular, they cannot be expanded as power series in the natural variable s=log|x|. Next, we prove the existence of infinitely many entire regular radial solutions. They all diverge to −∞ as |x|→∞ and we specify their asymptotic behaviour. As in the case with power-type nonlinearities [F. Gazzola, H.-Ch. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann. 334 (2006) 905–936], the entire singular solution x↦−4log|x| plays the role of a separatrix in the bifurcation picture. Finally, a technique for the computer assisted study of a broad class of equations is developed. It is applied to obtain a computer assisted proof of the underlying dynamical behaviour for the bifurcation diagram of a corresponding autonomous system of ODEs, in the case n=5.

Related Topics
Physical Sciences and Engineering Mathematics Analysis