Article ID Journal Published Year Pages File Type
4613624 Journal of Differential Equations 2006 66 Pages PDF
Abstract

In this paper, we study the convergence of the wave equation with variable internal damping term γn(x)ut to the wave equation with boundary damping γ(x)⊗δx∈∂Ωut when (γn(x)) converges to γ(x)⊗δx∈∂Ω in the sense of distributions. When the domain Ω in which these equations are defined is an interval in R, we show that, under natural hypotheses, the compact global attractor of the wave equation damped on the interior converges in X=H1(Ω)×L2(Ω) to the one of the wave equation damped on the boundary, and that the dynamics on these attractors are equivalent. We also prove, in the higher-dimensional case, that the attractors are lower-semicontinuous in X and upper-semicontinuous in H1−ε(Ω)×H−ε(Ω).

Related Topics
Physical Sciences and Engineering Mathematics Analysis