Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4613624 | Journal of Differential Equations | 2006 | 66 Pages |
Abstract
In this paper, we study the convergence of the wave equation with variable internal damping term γn(x)ut to the wave equation with boundary damping γ(x)⊗δx∈∂Ωut when (γn(x)) converges to γ(x)⊗δx∈∂Ω in the sense of distributions. When the domain Ω in which these equations are defined is an interval in R, we show that, under natural hypotheses, the compact global attractor of the wave equation damped on the interior converges in X=H1(Ω)×L2(Ω) to the one of the wave equation damped on the boundary, and that the dynamics on these attractors are equivalent. We also prove, in the higher-dimensional case, that the attractors are lower-semicontinuous in X and upper-semicontinuous in H1−ε(Ω)×H−ε(Ω).
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis