Article ID Journal Published Year Pages File Type
4613668 Journal of Differential Equations 2006 14 Pages PDF
Abstract

In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable generalization of Lyapunov's inequality for systems of ordinary differential equations. We also obtain a family of curves bounding by above the kth variational eigencurve.

Related Topics
Physical Sciences and Engineering Mathematics Analysis