Article ID Journal Published Year Pages File Type
4614080 Journal of Mathematical Analysis and Applications 2017 6 Pages PDF
Abstract

Banach spaces that are complemented in the second dual are characterised precisely as those spaces X which enjoy the property that for every amenable semigroup S there exists an X-valued analogue of an invariant mean defined on the Banach space of all bounded X-valued functions on S. This was first observed by Bustos Domecq (2002) [5], however the original proof was slightly flawed as remarked by Lipecki. The primary aim of this note is to present a corrected version of the proof. We also demonstrate that universally separably injective spaces always admit invariant means with respect to countable amenable semigroups, thus such semigroups are not rich enough to capture complementation in the second dual as spaces falling into this class need not be complemented in the second dual.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,