Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4614646 | Journal of Mathematical Analysis and Applications | 2016 | 18 Pages |
Abstract
We define a new kind of divisor function D(1)(n) by the nth coefficient of the Dirichlet series (ζâ²(s))2 and denote by Î(1)(x) the error term in the asymptotic formula for ânâ¤xD(1)(n). Then we compute the first moment of Î(1)(x) that is â«1XÎ(1)(x)dx and consider 'discrete mean values' ânâ¤xÎ(1)k(n) (k=1,2) and deduce asymptotic formulas which are analogous to the results obtained by Voronoï, Hardy and Furuya.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Debika Banerjee, Makoto Minamide,