Article ID Journal Published Year Pages File Type
4614776 Journal of Mathematical Analysis and Applications 2016 17 Pages PDF
Abstract
In this paper we introduce the Δ-Volterra lattice which is interpreted in terms of symmetric orthogonal polynomials. It is shown that the measure of orthogonality associated with these systems of orthogonal polynomials evolves in t like (1+x2)1−tμ(x) where μ is a given positive Borel measure. Moreover, the Δ-Volterra lattice is related to the Δ-Toda lattice from Miura or Bäcklund transformations. The main ingredients are orthogonal polynomials which satisfy an Appell condition with respect to the forward difference operator Δ and the characterization of the point spectrum of a Jacobian operator that satisfies a Δ-Volterra equation (Lax type theorem). We also provide an explicit example of solutions of Δ-Volterra and Δ-Toda lattices, and connect this example with the results presented in the paper.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , , ,