Article ID Journal Published Year Pages File Type
4615987 Journal of Mathematical Analysis and Applications 2014 12 Pages PDF
Abstract

This paper investigates both homoclinic bifurcation and Hopf bifurcation which occur concurrently in a class of planar perturbed discontinuous systems of Filippov type. Firstly, based on a geometrical interpretation and a new analysis of the so-called successive function, sufficient conditions are proposed for the existence and stability of homoclinic orbit of unperturbed systems. Then, with the discussion about Poincaré map, bifurcation analyses of homoclinic orbit and parabolic–parabolic (PP) type pseudo-focus are presented. It is shown that two limit cycles can appear from the two different kinds of bifurcation in planar Filippov systems.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,