Article ID Journal Published Year Pages File Type
4616120 Journal of Mathematical Analysis and Applications 2014 21 Pages PDF
Abstract

The phenomena of concentration and cavitation and the formation of δ-shocks and vacuum states in solutions to the isentropic Euler equations for a modified Chaplygin gas are analyzed as the double parameter pressure vanishes. Firstly, the Riemann problem of the isentropic Euler equations for a modified Chaplygin gas is solved analytically. Secondly, it is rigorously shown that, as the pressure vanishes, any two-shock Riemann solution to the isentropic Euler equations for a modified Chaplygin gas tends to a δ-shock solution to the transport equations, and the intermediate density between the two shocks tends to a weighted δ-measure that forms the δ-shock; any two-rarefaction-wave Riemann solution to the isentropic Euler equations for a modified Chaplygin gas tends to a two-contact-discontinuity solution to the transport equations, the nonvacuum intermediate state between the two rarefaction waves tends to a vacuum state. Finally, some numerical results exhibiting the formation of δ-shocks and vacuum states are presented as the pressure decreases.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,