Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4616965 | Journal of Mathematical Analysis and Applications | 2013 | 20 Pages |
Abstract
We consider integral functionals with densities of p-growth, with respect to gradients, on a Lipschitz domain with mixed boundary conditions. The aim of this paper is to prove that, under uniform estimates within certain classes of p-growth and coercivity assumptions on the density, the minimizers are of higher integrability order, meaning that they belong to the space of first order Sobolev functions with an integrability of order p+ϵ for a uniform ϵ>0. The results are applied to a model describing damage evolution in a nonlinear elastic body and to a model for shape memory alloys.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Alice Fiaschi, Dorothee Knees, Sina Reichelt,