Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4617096 | Journal of Mathematical Analysis and Applications | 2013 | 9 Pages |
Abstract
In this paper, we consider the orbital stability of smooth solitary wave solutions of the generalized Camassa-Holm equation. By constructing the functional extremum problem and using the orbital stability theory presented by Grillakis, Shatah, Strauss and Bona, and Souganidis, we show that the solitary wave solutions of the generalized Camassa-Holm equation are orbitally stable or unstable as determined by the sign of a discriminant. The conclusions presented by the previous authors, such as Hakkaev and Kirchev, Constantin and Strauss, can be considered as a special case of our results.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Xiaohua Liu, Weiguo Zhang, Zhengming Li,