Article ID Journal Published Year Pages File Type
4617189 Journal of Mathematical Analysis and Applications 2012 16 Pages PDF
Abstract

The non-stationary conduction–convection problem including the velocity vector field and the pressure field as well as the temperature field is studied with a finite volume element (FVE) method. A fully discrete FVE formulation and the error estimates between the fully discrete FVE solutions and the accuracy solution are provided. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the FVE method is feasible and efficient for finding the numerical solutions of the non-stationary conduction–convection problem and is one of the most effective numerical methods by comparing the results of the numerical simulations of the FVE formulation with those of the numerical simulations of the finite element method and the finite difference scheme for the non-stationary conduction–convection problem.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , , ,