Article ID Journal Published Year Pages File Type
4617665 Journal of Mathematical Analysis and Applications 2012 15 Pages PDF
Abstract

In this paper we study the asymptotic tail behavior for a non-standard renewal risk model with a dependence structure and stochastic return. An insurance company is allowed to invest in financial assets such as risk-free bonds and risky stocks, and the price process of its portfolio is described by a geometric Lévy process. By restricting the claim-size distribution to the class of extended regular variation (ERV) and imposing a constraint on the Lévy process in terms of its Laplace exponent, we obtain for the tail probability of the stochastic present value of aggregate claims a precise asymptotic formula, which holds uniformly for all time horizons. We further prove that the corresponding ruin probability also satisfies the same asymptotic formula.

Related Topics
Physical Sciences and Engineering Mathematics Analysis