Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4617736 | Journal of Mathematical Analysis and Applications | 2012 | 10 Pages |
Abstract
The motion of a naturally straight inextensible flexible elastic hanging rod is formulated and then linearized about the straight solution. To solve this equation by separation of variables, an eigenvalue problem is derived. When the stiffness of the rod is small, the eigenvalue equation is a singular perturbation problem. This paper is devoted to solving this eigenvalue problem by boundary layer analysis when the stiffness is suitably small, especially on the analytic approximate solutions of the first several eigenvalues and eigenfunctions. The first three eigenvalues are also compared with the numerical results computed by a finite difference method. The excellent agreement shows the efficiency of the boundary layer analysis.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis