Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4617813 | Journal of Mathematical Analysis and Applications | 2011 | 13 Pages |
We consider a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive foundation. The process is quasistatic, the material behavior is modeled with an electro-viscoelastic constitutive law and the contact is described with subdifferential boundary conditions. We derive the variational formulation of the problem which is in the form of a system involving two history-dependent hemivariational inequalities in which the unknowns are the velocity and electric potential field. Then we prove the existence of a unique weak solution to the model. The proof is based on a recent result on history-dependent hemivariational inequalities obtained in Migórski et al. (submitted for publication) [16].