Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4617885 | Journal of Mathematical Analysis and Applications | 2011 | 11 Pages |
Existence, uniqueness and convergence of approximants of positive weak solutions for semilinear second order elliptic inequalities are obtained. The nonlinearities involved in these inequalities satisfy suitable upper or lower bound conditions or monotonicity conditions. The lower bound conditions are allowed to contain the critical Sobolev exponents. The methodology is to establish variational inequality principles for demicontinuous pseudo-contractive maps in Hilbert spaces by considering convergence of approximants and apply them to the corresponding variational inequalities arising from the semilinear second order elliptic inequalities. Examples on the existence, uniqueness and convergence of approximants of positive weak solutions of the semilinear second order elliptic inequalities are given.