Article ID Journal Published Year Pages File Type
4617895 Journal of Mathematical Analysis and Applications 2011 16 Pages PDF
Abstract

The purpose of this paper is to prove the existence of a unique classical solution u(x) to the quasilinear elliptic equation −∇⋅(a(u)∇u)+v⋅∇u=f, where u(x0)=u0 at x0∈Ω and where n⋅∇u=g on the boundary ∂Ω. We prove that if the functions a, f, v, g satisfy certain conditions, then a unique classical solution u(x) exists. Applications include stationary heat/diffusion problems with convection and with a source/sink, where the value of the solution is known at a spatial location x0∈Ω, and where n⋅∇u is known on the boundary.

Related Topics
Physical Sciences and Engineering Mathematics Analysis