Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4617895 | Journal of Mathematical Analysis and Applications | 2011 | 16 Pages |
Abstract
The purpose of this paper is to prove the existence of a unique classical solution u(x) to the quasilinear elliptic equation −∇⋅(a(u)∇u)+v⋅∇u=f, where u(x0)=u0 at x0∈Ω and where n⋅∇u=g on the boundary ∂Ω. We prove that if the functions a, f, v, g satisfy certain conditions, then a unique classical solution u(x) exists. Applications include stationary heat/diffusion problems with convection and with a source/sink, where the value of the solution is known at a spatial location x0∈Ω, and where n⋅∇u is known on the boundary.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis